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CH-I211 Genhe 4, Switzerland 
1: Centre for Panicle Theory, Department of Mathematical Sciences, University of Durham, 
South Road, Durham DHI 3LE, UK 
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Abstract. The antiperiodic 3~ spherical model is studied on a hypercubic lattice, two sides 
of which are finite and the other infinite. The universal correlation length finite-size scaling 
amplitude in the conjectured relationship ( / L = A / x  is calculated eradly and found to 
be A =0.1361 . . . , which should be compared with the antiperiodic 3 0  lsing model value 
of A=0.12. 

It is well known that the finite-size scaling amplitude dj of the correlation length 
6; = L d {  of a spin system (below its upper critical dimension), evaluated in a finite 
geometry oiiinear extent i and at its burl criticai poini, is a universai number (Rivman 
and Fisher 1984, Privman et a1 1991). In two dimensions, on an infinitely long strip 
of finite width L with periodic boundary conditions, di can be related to the critical 
exponent xi through d:' = 2 m ,  as a consequence of conformal invariance (Cardy 
1984) (x. is the scaling dimension, or critical exponent, of the field whose two-point 
function decays with correlation length &). 

bulk critical temperature), defined on hypercubic lattices in the 'pillar geometry', where 
two sides of the lattice are finite and the other infinite?. Two 3~ models have been 
studied in detail so far: the spherical model model and the Ising model. For the 
spherical model this inverse reIationship holds for both periodic and antiperiodic 
boundary conditions across the finite dimensions (Henkel 1988). For the king model 
it is only true for antiperiodic boundary conditions (Henkel 1986, 1987). A Monte 
Carlo study of the antiperiodic lsing model (Weston 1990) has found the scaling 
amplitude in the conjectured relationsip [JL= A/xi to be A = 0.117 (3)L In this letter, 
we find from an exact calculation for the antiperiodic spherical model A = 0.1361 . . . . 

The SEEP re!z?i"nship -di - !,!X{ hzs been ohserved for some lrLl systems (a! !heir 

5 email: Henkel@CGEUGESZ.BITNET 
11 email R.A. Weston@uk.ac.durham 
f A similar behaviour has been predicted from canformal field theory for models defined on the geometry 
S'xR (Cardy 1985). See Alcaraz and Hemnann (1987) for an attempted numerical verification. 
$The  value A=0.117 (3) was an average over measurements on L=6 ,  8, IO latticcs. Its associated ermr 
does not take into account the uncertainties involved in extrapolating to L-100. See Weston (1990) for details. 
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The partition function formulation of the spherical model has been discussed in 
detail in the literature (see e.g. Joyce 1972, Barber and Fisher 1973, Baxter 1982, BrCzin 
1982, Luck 1985, Singh and Pathria 1985a, b). Here, for simplicity, the model is 
discussed in terms of its quantum Hamiltonian (Kogut 1979, Henkel 1990). Then 
the pillar geometry defined above is automatic. The quantum Hamiltonian of the 
d = r +  1 dimensional spherical model (Srednicki 1979, Henkel and Hoeger 1984, 
Henkel 1988) is: 

H = - t h + ; ( ~ ~ ~ ~ - f ~ ~ o l l x )  (1) 

where x is a vector of position operators (one for each of N spatial sites), A is the 
Laplacian and A4 is the spatial interaction matrix. There is a canonical constraint which 
fixes ,y in terms of the coupling A = 2/ T2 (where T is the temperature of the isotropic 
model) 

N = (01~~10). (2) 
If A is taken to allow only nearest neighbour interactions, then on an antiperiodic 
hypercubic lattice of sides L,, . . . , L, the eigenvalues are 

27r(n+4) n = O , 1 , _ _ . ,  4 - 1 .  (3) k. = 
4 

fir = 2 Cos(kj) 
j = ,  

with [a, ,  a:.]= SX*, and wk =[,yr-X,Ll  COS(^^)]"^, gives the Hamiltonian as 

H = A 1 / 2 x  wk(a:ak+f). ( 6 )  
k 

The constraint (2) becomes 

1 L, . . . L, = A - " 2 x -  
k 2wk (7) 

and can be solved (Henkel and Hoeger 1984, Singh an Pathria 1985, Henkel 1988) 
to give ,y as a function of the Lj and A. 

In what follows, we shall consider the r = 2  cases of the 'pillar geometry' with 
L, = L, = L and of the '$lm geometry' with L, = L and L2 infinite. We define the 
'thermogeometric parameter' y = i.;i,y - i j r i i  (see pathria i W j .  Tnen ihe sphericai 
constraint for the pillar geometry becomes to leading order in 1/L (see Singh and 
Pathria 1985b)P 

t We correct numerical errors for the constraint in the Hamiltonian limit case (Henkel 1988). 
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where K, is a modified Bessel function, q = w; qx, qv E H, and the prime indicates 
that the term with q = O  should be excluded. For the film geometry Zb(- l )4x+9~+ 

(-1)". and q = lqxl. 
At the critical point A = A, the universal number y is obtained, in the case r = 2 

zy =I' (-l)%+'vq-' exp( -2yq). (9) 
'I 

In contrast with the cases of periodic or free boundary conditions (where y>O), (9) 
does not have a real solution. For the pillar geometry, we define the functions 

" 

C ( u ) =  z: 1 (-l)qs+qyq-' cos(2uq) 
q.=I qr=0 

and from numerical studies we obtain the conjectures 

(11) 
7r 7r 

i f - - - s u s -  C(u)  =Oif U =  *i d 2 . A  
yielding y = iu = *i5/4. For the film geometry (see e.g. Singh and Pathria 1985b) the 
functions analogous to S ( u )  and C(u) can be evaluated exactly and y = *ia/3. It was 
this exact result in the film geometry which triggered us to consider the imaginary 
y-axis for the pillar geometry as well. 

It might seem surprising to find an imaginary value for y. This new possibility arises 
from the discretization equation (3) which implies that the eigenvalues pk always 
remain separated from their bulk upper limit 2 1  by a term of order O(1/L2). Since 
only y2 enters into physical quantities, it is enough to demand that the partition function 
exists, which is guaranteed as long as the masses obtained from H stay real. This is 
the case if IuI s r/&. 

Substituting into (6) gives the mass gap of the theory as a function of L, and its 
inverse, the spin-spin correlation length e-. Since the quantum Hamiltonian is obtained 
from the transfer matrix by taking an extreme anisotropic limit in the spatial and 
temporal coupling constants, the normalization of H is arbitrary (Kogut 1979, Henkel 
1990). This normalization must be fixed consistently in order to obtain the universal 
scaling amplitude A. The natural way to do  this is to demand that the spin-spin 
correlation be symmetric in the thermodynamic limit, or  equivalently to require that 
energy and momentum should be measured in the same units so as to obtain the linear 
dispersion relation E = Ikl, where the 'speed of light' is unity. It is important to realize 
that changing the normalization of the Hamiltonian is not equivalent to simply rescaling 
A. The values A, and y are independent of this normalization (y is even universal). 

S(u)=-u /2  

The operators xi become time-dependent through the normal relationship 

xi( t )  = e'"'xj e-1"' 

The spin correlation function of the statistical mechanical system is given by 

(xj(Ox,(W = (01 T(xi(-iO~j(0))lO) (13) 
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where the meaning of time-ordering is extended to imaginary time. This may be worked 
out from the mode expansion, and is 

Altering the normalization of the Hamiltonian H+ y'/'H changes this expression to 

It follows from the definition of wk, that in the thermodynamic limit (the combined 
limit La + m, a + 0, where a is the lattice spacing) 

If we require that our quantum Hamiltonian describes an isotropic statistical mechanical 
system in this limit, then this function should be symmetric in f and each component 
of (s, - s j ) .  This means choosing y=2/AC and we see from (17) that this gives indeed 
the desired form of the dispersion relation. Then (6) gives the mass gap as 

m = &' = & k .  (18) 

In the limit L+m, this implies that for antiperiodic boundary conditions (see Henkel 
1988) 

where d* is the number of finite dimensions. The scaling dimension of the spin operator 
of this model is the same as that of the Gaussian model, x, = 1 .  So the scaling amplitude 
A for the antiperiodict pillar geometry, defined through &/ L = A/x,, is 

and should be compared with the analogous 3~ king model result A=0.12  (Weston 
1990). The value ]/(a 2 a )  is the scaling amplitude of the Gaussian model-a model 
not immediately useful as a comparison because of its lack of a simple second-order 
phase transition. 

To summarize, we have found that the finite-size scaling amplitudeof the correlation 
length in some 3~ models supports the conjectured form JBi = A/&. The values of A 
obtained for the king and spherical models are quite close to each other. It remains 
an open question why imposing antiperiodic boundary conditions should be essential. 
It would be very interesting to know this amplitude for some other critical 30 models. 
Very recently, correlation functions in a 30 dimer model have been studied (Priezzhev 
and Brankov 1991). 

t In the case of periodic boundary conditions, y = 0.755 9711.. . , which implies A = 4y I 3.0239.. . . This 
is in agreement with the Lagrangian results (see Brtzin 1982, Luck 1985). confirming universality. 
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